今日の臨床サポート 今日の臨床サポート
関連論文:
img  29:  Cobinamide is superior to other treatments in a mouse model of cyanide poisoning.
 
著者: Adriano Chan, Maheswari Balasubramanian, William Blackledge, Othman M Mohammad, Luis Alvarez, Gerry R Boss, Timothy D Bigby
雑誌名: Clin Toxicol (Phila). 2010 Aug;48(7):709-17. doi: 10.3109/15563650.2010.505197.
Abstract/Text CONTEXT: Cyanide is a rapidly acting cellular poison, primarily targeting cytochrome c oxidase, and is a common occupational and residential toxin, mostly via smoke inhalation. Cyanide is also a potential weapon of mass destruction, with recent credible threats of attacks focusing the need for better treatments, as current cyanide antidotes are limited and impractical for rapid deployment in mass casualty settings.
OBJECTIVE: We have used mouse models of cyanide poisoning to compare the efficacy of cobinamide (Cbi), the precursor to cobalamin (vitamin B(12)), to currently approved cyanide antidotes. Cbi has extremely high affinity for cyanide and substantial solubility in water.
MATERIALS AND METHODS: We studied Cbi in both an inhaled and intraperitoneal model of cyanide poisoning in mice.
RESULTS: We found Cbi more effective than hydroxocobalamin, sodium thiosulfate, sodium nitrite, and the combination of sodium thiosulfate-sodium nitrite in treating cyanide poisoning. Compared to hydroxocobalamin, Cbi was 3 and 11 times more potent in the intraperitoneal and inhalation models, respectively. Cobinamide sulfite (Cbi-SO(3)) was rapidly absorbed after intramuscular injection, and mice recovered from a lethal dose of cyanide even when given at a time when they had been apneic for over 2 min. In range-finding studies, Cbi-SO(3) at doses up to 2000 mg/kg exhibited no clinical toxicity.
DISCUSSION AND CONCLUSION: These studies demonstrate that Cbi is a highly effective cyanide antidote in mouse models, and suggest it could be used in a mass casualty setting, because it can be given rapidly as an intramuscular injection when administered as Cbi-SO(3). Based on these animal data Cbi-SO(3) appears to be an antidote worthy of further testing as a therapy for mass casualties.

PMID 20704457  Clin Toxicol (Phila). 2010 Aug;48(7):709-17. doi: 10.3109/15563650.2010.505197.
戻る

さらなるご利用にはご登録が必要です。

こちらよりご契約または優待日間無料トライアルお申込みをお願いします。

(※トライアルご登録は1名様につき、一度となります)


ご契約の場合はご招待された方だけのご優待特典があります。

以下の優待コードを入力いただくと、

契約期間が通常12ヵ月のところ、14ヵ月ご利用いただけます。

優待コード: (利用期限:まで)

ご契約はこちらから